

KEPLER PHOTOMETER

Primary Mirror Assembly Metrology and FEA Analysis of Zero-Gravity Figure

Dr. George W. Jones
Principal Optical Engineer
L3 Communications – Brashear Division
Pittsburgh, Pa. 15238

Overview

- Brief description of Kepler Space Photometer
- Brief description of L-3 Designed Primary Mirror Assembly (PMA)
- Primary Mirror (PM) fabricated profile
- Comparison of interferometric tests with Finite Element Analysis (FEA) predictions shows good agreement < 10% residual
- Testing shows successful assembly of PMA
- Summary

Kepler Photometer

- Mission to search for Earth size planets
 - 170,000 photometric objects
 - Observes same area of sky for 4 years
 - Look for planetary transits of stars
 - Kepler Photometer Details at http://kepler.nasa.gov/
- Schmidt Optical Design
 - 0.95 meter diameter Schmidt Window
 - 1.4 meter diameter Primary Mirror
 - 100 square degree field of view
- Operates -5°C to -55°C

Photometer Architecture

- Two additional electronic boxes mounted to spacecraft (CSP and RPE)
- Focal plane operated at –95° C reduced dark signal and radiation degradation effects
- Field flattener lenses integral to CCD modules provides bandpass filters and CCD radiation protection
- Focus mechanisms at primary mirror mount provide focus / tip-tilt correction for metering structure CTE/CME effects
- Stray-light controlled by baffled GFCE honeycomb metering structure
- Exterior MLI blankets control thermal gradients on optics
- Active heater control on focal plane controls focal plane to $\pm 0.1^{\circ}$ C.

Day 1 (1-9)

E. Bachtell/R. Lampereur Page 6

Kepler Primary Mirror Assembly

- PMA designed and analyzed by L-3
 - 6 Bonded invar pads on back of PM
 - 6 graphite epoxy struts
 - 3 bipod attachments to focus mechanism or strong back for PMA testing and shipping
- Light weighted PM
 - Designed by L-3
 - Corning ULE blank
 - Figured by L-3

PMA on shipping container base

Light Weighted Primary Mirror

- Frit bonded ULE **Primary**
- 1.4 meter diameter CA
- **Reinforced Bond sites** for Invar pads
- No spare PM
 - Careful for good margins
 - **Redundant Bond** sites
 - 6 Primary
 - 6 Alternate

Overview of Large Optics Metrology

- Testing difficult because large light weight mirrors distort
- Multiple tests used to assure correct Zero-G figure
 - Air bladder
 - Counterweighted zero-G mount
 - PMA vertical testing looking up and looking down
 - PMA horizontal testing
- FEA analysis predicts 1g surface error based upon
 - As built PM dimensions for correct mass distribution required
 - Accurate measurement of weight
- Tooling designed and implemented carefully
 - Must be repeatable for each iterative test
 - Calibrate design residuals, where possible
- Interferometry
 - Average data to minimize thermal and vibrational noise
 - Each position had 100 frames of data over 30 minute thermal noise < 0.004 waves
 - Multiple PM orientations, where possible, self calibrate low frequency setup errors
 - Total test time over 1 hour
 - Final noise test noise < 0.007 waves RMS

Comparison of Optical Test Methods

	Air bladder	Counterweighted	PMA vertical	PMA horizontal
Analysis				
Surface RMS	0.009 λ	0.028 λ	0.285 λ	1.052 λ
Surface P-V	0.054 λ	0.156 λ	1.309 λ	4.03 λ
Model error				
Surface RMS	0.026 λ	est. 0.016 λ	0.021 λ	0.033 λ
				Astigmatism
Type	Symmetrical	Asymmetrical	6 support points	6 support points
	Uniformly Curved	Point support yields high	Analysis straight	Analysis straight
Difficulties	bladder to match PM	frequency highs	forward	forward
	Erroneous force at OD	Careful adjustment of each		Horizontal testing
	of PM - Uncertainty in	counter weight to match		astigmatism on PM
Implementation	symmetrical errors	actual weight of PM	Simple to implement	contaminated by air.
	Difficult due to			
	vibrations. Requires 3			
	hard points for	Vibrationaly stable. Loads	Interferometry mildly	Interferometry Difficult
Interferometry	vibrational stability	monitored at 3 points.	difficult with large P-V	with Large P-V
	Fabrication (polishing)	During assembly of PMA	Average up and down	Easy Test at L-3 and
Use at L-3	ofPM	(after pads bonded)	best Zero-G prediction	BATC

 $\lambda = 633 \text{ NM}$

Optical Test Overview

- Vertical PMA Optical Testing
 - Final PM surface error
 - Average of looking up and looking down
- Interferometry comparison with FEA
 - Vertical PMA testing (looking up or looking down)
 - Horizontal Optical Axis Testing
 - Air bladder Testing
- Assure Correct Assembly
 - Counterweighted Zero-G Mount
 - Test PM
 - Test PM with bonded pads
 - Test PMA with bonded pads and struts

Vertical Test Tower

PMA Assembly

Vertical Test Tower PMA Down-Looking

Vertical PMA Test for Fabricated Surface

Up Looking Test RMS 0.301

Down Looking Test RMS 0.253

Average = Surface Figure RMS 0.058

- PMA coordinate system
- 6 bonded pads support points evident in interferometric test
- Plot increment is 0.1 λ , at $\lambda = 633$ NM

Final Fabricated Surface Figure

- Space Zero-G, ambient temperature, fabricated surface Figure
- Average of vertical testing
 - PMA up looking
 - PMA down looking
- PMA coordinate system
- Tested RMS 0.0585λ
 - Wavelength = 633 NM
- Specification RMS 0.075 λ
 - Space Zero-G
 - Temp. = -5° C to -55° C
- Plot increment 0.025λ

Vertical Up Looking Compared to FEA

Test – Fabricated Surface RMS= 0.271

FEA Model RMS= 0.285, PV= 1.31

Difference = Model Error RMS= 0.021

- **Interferometric Test Fabricated Surface Error = Tested 1g**
- FEA Model from ANSYS analysis is predicted 1g effect
- Difference is modeling error
- Contour increment 0.1 λ , $\lambda = 633$ NM
- * PMA coordinate system

Up Looking Model Error

RMS= 0.021λ

- $PV = 0.15 \lambda$
- Plot increment= 0.02λ
- $\lambda = 633 \text{ NM}$
- RMS Error is 7.4%
- Largest error
 - **Bond pad support** points
- **Model improvement**
 - Higher density mesh

Horizontal Test compared with FEA

Test - Fabricated Surface RMS= 1.047

FEA Model **RMS= 1.052**

Difference = Model Error RMS = 0.033

- **Interferometric Test Fabricated Surface Error = Tested 1g**
- FEA Model from ANSYS analysis is predicted 1g effect
- Difference is modeling error
- Contour increment 0.25λ

* PMA coordinate system

Horizontal Test Model Error

- RMS= 0.033λ
- $PV = 0.17 \lambda$
- Plot increment= 0.05λ
- $\lambda = 633 \text{ NM}$
- RMS Error is 3.1%
- **Model improvement**
 - **Bond pad support** points
 - **Higher density mesh**
- **Test improvement**
 - **Astigmatism from** horizontal testing in air
 - Reduce thermal gradient - better mixing of air

Air Bladder Testing

Air Bladder

Test Tower Interferometer on top

Air Bladder Testing

Air Bladder Test RMS = 0.034

Fabricated Surface RMS= 0.058

Difference is **Predicted Gravity** RMS = 0.032

- PM coordinate system = PMA rotated CCW 42.1 degrees
- Fabricated Surface from PMA UP and Down Average
- Plot increment= 0.02λ

Air Bladder Compared to FEA

Predicted Gravity RMS = 0.032

FEA Model RMS = 0.0090

Difference is Model Error RMS = 0.028

- Model Error RMS= 0.028λ
- **Total Model Error is 311%**
- Plot increment= 0.02λ
- Model is adequate for fabrication Specification of 0.075 λ

Air Bladder Model Error Interpretation

Model Error RMS= 0.028

Symmetrical Error RMS= 0.026

Asymmetrical Error RMS= 0.010

- Symmetrical error
 - OD edge problem due to bladder wrapping up side
 - Bladder does not fit curved PM back

- **Asymmetrical error**
 - Residual bond pad from vertical testing
 - Interferometry noise from large P-V and vibration
 - RMS expected noise level

Counterweighted Zero-G Mount

- Test during PMA assembly
 - Assure PMA is assembled with NO residual forces in PM from struts
 - **Use PM coordinate system**
- In process modification to mount improved results, but no FEA model
- Three Tests
 - PM on Zero-G Mount
 - PM with bonded pads on Zero-G Mount
 - Assembled PMA with Zero-G Mount

PM Test on Counterweighted Zero-G Mount

- PM coordinate system
- PM tested on Zero-G mount should be the same as the Air bladder test
- Plot increment 0.02λ

Zero-G Mount Difference Interpretation

- Symmetrical error is similar to Air bladder residual
- Asymmetrical is mostly Zero-G mount error
 - Assembly and implementation of counterweights
 - Non uniform mass distribution in fabricated PM

Assembly of PMA - PM with Bonded Pads

PM with bonded pads RMS = 0.052

PM on ZeroG RMS = 0.053

Difference RMS= 0.021

- No evidence of bonded pad adhesive cure print through
- Plot increment 0.02λ
- Difference is all asymmetrical third harmonic
 - After bonding pads had to rotate PM by 60 degrees
 - Conflict between ZeroG mount and Bonded pads
 - Mount error is $\frac{1}{2}$ or RMS = 0.010 λ
- * PM coordinate system

Assembly of PMA struts on Zero-G Mount

- Difference shows NO evidence of residual forces from assembly of PMA
- RMS error is expected noise level in data
- Plot increment 0.02λ

* PM coordinate system

Conclusions

- Design and analysis of PM and Test tooling was challenging but analysis and testing demonstrated to be adequate for our specification
- Excellent agreement of FEA analysis of PMA with interferometric test results
 - Vertical PMA testing error is 7.4%
 - Horizontal PMA testing error is 3.1%
- Air Bladder Modeling errors and implementation errors adequate for fabrication
 - **RMS** error 0.028 λ
 - Better implementation of air bladder at OD of mirror will significantly improve this symmetrical error
- PMA was assembled correctly
 - Testing noise $< 0.010 \lambda RMS$
 - Counterweighted Zero-G Mount testing showed surface figure repeatable did not change during assembly as desired

